
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the author's
institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier's archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

eDirect

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1

Author's Personal Copy
Available online at Scienc
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate /net
Original Article
An Integrated Software Testing Framework for
FPGA-Based Controllers in Nuclear Power Plants*
Jaeyeob Kim a, Eui-Sub Kim a, Junbeom Yoo a,*, Young Jun Lee b, and
Jong-Gyun Choi b

a Division of Computer Science and Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul,

143-701, Republic of Korea
b MMIS Lab., Korea Atomic Energy Research Institute, 989-111 Deadeok-daero, Yuseong-gu, Daejeon, 305-353,

Republic of Korea
a r t i c l e i n f o

Article history:

Received 1 September 2015

Received in revised form

28 November 2015

Accepted 3 December 2015

Available online 21 January 2016

Keywords:

Co-simulation

FPGA

Simulation

Testing

Verification
* A preliminary version of this paper was p
Korea, in 2014 [1].
* Corresponding author.
E-mail address: jbyoo@konkuk.ac.kr (J. Yo

http://dx.doi.org/10.1016/j.net.2015.12.008
1738-5733/Copyright © 2016, Published by El
the CC BY-NC-ND license (http://creativecom
a b s t r a c t

Field-programmable gate arrays (FPGAs) have received much attention from the nuclear

industry as an alternative platform to programmable logic controllers for digital instru-

mentation and control. The software aspect of FPGA development consists of several steps

of synthesis and refinement, and also requires verification activities, such as simulations

that are performed individually at each step. This study proposed an integrated software-

testing framework for simulating all artifacts of the FPGA software development simul-

taneously and evaluating whether all artifacts work correctly using common oracle pro-

grams. This method also generates a massive number of meaningful simulation scenarios

that reflect reactor shutdown logics. The experiment, which was performed on two FPGA

software implementations, showed that it can dramatically save both time and costs.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Programmable logic controllers (PLCs) [2] are widely used to

implement safety-critical systems for digital instrumentation

and control (I&C) of Nuclear power plants (NPPs). The

increasing complexity of newly developed systems and

maintenance costs are now demanding more powerful and

cost-effective implementation, such as field-programmable

gate arrays (FPGAs) [3]. The nuclear industry is now eagerly

researchingFPGA-baseddigital I&Cs [4e6] to replacePLC-based
resented at the Transacti

o).

sevier Korea LLC on beha
mons.org/licenses/by-nc
systems. In turn, international standards [7e9] require more

rigorous demonstrations of the safety of these new systems.

The FPGA software, which this paper concerns, was first

modeledwith hardware description languages (HDLs), such as

Verilog and VHSIC HDL (VHDL), by software designers

manually, and then subsequently synthesized into gate-level

designs and physical layouts by software synthesis tools

provided by FPGA vendors (e.g., ISE Design Suite (Xilinx, San

Jose, CA, USA) [10], Quartus Prime (Altera, San Jose, CA, USA)

[11], and Libero SoC (Microsemi, Aliso Viejo, CA, USA) [12]).
ons of the Korean Nuclear Society Autumn Meeting, Pyeongchang,

lf of Korean Nuclear Society. This is an open access article under
-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jbyoo@konkuk.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2015.12.008&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1 e The V-shaped life cycle and a typical FPGA development process. FPGA, field-programmable gate arrays; RTL,

register-transfer level.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1 471

Author's Personal Copy
FPGA tools make the synthesis process fully automatic, and

software designers largely focus on HDL designs to implement

FPGA requirements correctly.

FPGA software designers also use verification techniques,

such as “simulation” [13e15], in order to check if high-level

designs are correctly synthesized into low-level ones. At

each step [i.e., register-transfer level (RTL), gate-level, and

layout], designers perform three common activities. They first

develop test scenarios, then simulate each target in a test

bench, and finally evaluate (i.e., observe) the simulation re-

sults against specified requirements. The problem on which

this study focused is that the verification activity should be

performed at each step individually and repetitively.

Furthermore, the individual preparation for each verification

step, such as developing test scenarios and test benches, takes

considerable time and money.

This paper proposed an integrated software testing frame-

work for FPGA software developments (IST-FPGA). It allows us

to perform the three activities of the simulation-based verifi-

cationonly once and inone step. For all designartifacts at every

step, it generates common and meaningful test scenarios me-

chanically, simulates all designs simultaneously, and finally

evaluates the simulation results against expected ones alto-

gether. If any one of the designs show different (i.e., incorrect)

behavior from the expected one (i.e., a comparison oracle pro-

gram), IST-FPGA analyzes and compares the incorrect case in

detail. IST-FPGA is also supported by CASE tools, such as Ver-

ilog/VHDL Scenario Generator and Co-simulator.

In order to demonstrate the effectiveness of IST-FPGA, we

performed an experiment with two FPGA-based I&C systems

that are under development by the Korea Atomic Energy

Research Institute (Daejeon, Korea). This experiment success-

fully demonstrated how IST-FPGA can reduce the time and cost
for the simulation-based verification of FPGA software. The

remainder of the paper is organized as follows: Section 2 pro-

vides background information on FPGA verification and simu-

lation techniques. Various standards and guidelines for

developing and verifying FPGA-based digital I&Cs are briefly

surveyed. Section 3 proposes the integrated software testing

framework for FPGA as well as assisting tools we developed.

Experiment results are presented in Section 4, and Section 5

surveys related research. Section 6 concludes the paper and

provides remarks on future research extension and direction.
2. Background

2.1. FPGA development and software verification

The system development life cycle of FPGA-based I&Cs should

follow IEC-61513 [9]. An FPGA-based system has a specific

feature that the portion of the development life cycle that uses

HDL be classified as software, then once it is downloaded to a

chip, it is classified as hardware. FPGA, therefore, should be

developed to meet both IEC-60880 [8] in terms of software and

IEC-60987 [16] in terms of hardware. Fig. 1 depicts the V-sha-

ped life cycle of FPGA development explained in IEC-62566

[17], consisting of software and hardware aspects. The soft-

ware aspect also has a typical development life cycle [18]

presented on the left-hand side of the figure.

At each step of the FPGA software development life cycle,

designers perform a simulation-based verification in order to

confirm that each artifact satisfies its required specification.

The first simulation on RTL designs, called behavioral simu-

lation, aims to confirm that all requirements are implemented

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Fig. 2 e The simulation-based verification technique. (A) Typical simulation-based verification and (B) typical co-simulation.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1472

Author's Personal Copy
into the RTL design correctly. As most designers develop RTL

designs manually, this takes a significant amount of time for

the behavioral simulation. After logic synthesis from RTL to

gate-level design, designers perform a logic simulation in

order to confirm that functionalities were preserved during

synthesis. After place and route, they can validate the layout

via a post-layout simulation to check that the layout meets all

timing requirements. All simulation-based verifications at

each step are performed individually and repetitively by

experienced engineers, and are also considered to be one of

key factors for efficient FPGA development.
2.2. Simulation-based verification

“Simulation-based verification” is a traditional method [15]

that can be applied at any design level, be it RTL, gate-level,

or layout. Fig. 2A depicts a typical flow of the simulation-

based verification. Static error, potential error, and coding

style guideline violations are checked through the linter pro-

gram [19] beforehand. We then need to prepare a test plan

determining what scenarios are used in the simulation. Sim-

ulations are performed using a test bench, andwe also need to

measure code coverages [20] in order to evaluate the quality of

the simulations performed. If the coverage value measured

does not reach an expected value, the portion of the dotted

line in Fig. 2A needs to be performed repeatedly. Debugging

can be performed on the basis of the analyzed information.

This entire verification process is repeated until the simula-

tion result has no debugging issues.

“Co-simulation” is a verification method that is extended

from that described above. The basic idea of co-simulation is

that if two designs generate the same outputs with the same

inputs, both designs will perform the same operations [21].

Fig. 2B depicts a typical co-simulation process. The two designs
are simulated in a suitable way and then all simulation results

are compared. Two designs at any level can be used, e.g., two

Verilog programs [22], a Verilog and C program [23], or a Verilog

and FPGA hardware implementation [24]. Questa ADMS

(Mentor Graphics, Wilsonville, OR, USA) [25] extends the

Questa verification platform to provide a unified simulation

environment that can co-simulate various designs at any level.

If significant outputs in all simulation results are the same in

every case, it can be considered that the two designs perform

the same actions, at least for the simulation scenarios.
2.3. Standards and guidelines for FPGA design
verification

The development and verification of FPGA-based safety-level

controllers in nuclear power plants is an active research topic

around the globe. For now, the standard discussing our concern

is IEC 62566 [17]: “Nuclear Power Plants - Instrumentation and

control important to safety - Development of HDL programmed

integrated circuits for systems performing category A func-

tions.” Various organizations and research groups are now

working todefinemoredetailedguidelinesandstandards [26,27].

System safety assessment and the design life cycle are

addressed in several regulations, such as DO-254 [28], IEEE 1012

[29], and IEC 61508 [30], and they can be used for FPGA-based

systems as a general guide. More specific verification and

validation processes, configuration management, and the

development life cycle used in safety systems in nuclear power

plants are addressed in IEEE 7-4.3.2 [31], IEEE 603 [32], IEC 62566

[17], and IEC 60880 [8]. Several Electric Power Research Institute

(EPRI; Palo Alto, CA, USA) guidelines (TR-1019181/109390/

1022983 [33e35]) try to guide the use of FPGA in NPP I&C sys-

tems, while NUREG/CR-7006 [18] provides a review guideline

that can support acceptance or licensing processes.

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Fig. 3 e An integrated software testing framework for FPGA (IST-FPGA). EDIF, electronic design interchange format; FBD,

function block diagram; FPGA, field-programmable gate arrays; IDE, integrated development environment;IST, integrated

software testing; RTL, register-transfer level; VHDL, VHISC hardware description languages.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1 473

Author's Personal Copy
3. IST-FPGA

3.1. Overview

IST-FPGA is an integrated software testing framework for

FPGA-based digital I&Cs in NPPs. As illustrated in Fig. 3, it

suggests three steps of co-simulation-based software verifi-

cation, namely: Step 1 - Preparation, preparing a common

oracle program with scenarios; Step 2 - Co-simulation, co-

simulating all designs simultaneously; and Step 3 - Evalua-

tion: evaluating simulation results all together.

3.1.1. Step 1dPreparation
IST-FPGA first prepares one common oracle program (i.e., a

correct answer) and confirms its correct functioning against

required specifications. It co-simulates all designs simulta-

neously in order to check their behavioral equivalence instead

of performing simulations and evaluating the results individ-

ually at each level. Therefore, it requires designers to evaluate

simulation results only once. IST-FPGA supports three kinds of

common oracles, such as a function block diagram (FBD) [2]

and Verilog and VHDL programs. If we use Verilog or VHDL

programs, IST-FPGA mechanically generates a number of

meaningful scenarios through the Verilog Scenario Generator

and the VHDL Scenario Generator. It also generates a test

bench that can execute the scenarios upon Verilog/VHLD-

Netlist-Layout programs seamlessly with ModelSim (Mentor
Graphics, Wilsonville, OR, USA) [36]. We then simulate the

Verilog/VHDL program with the scenarios through ModelSim

in order to verify that it works correctly. This is a manual

verification performed by experienced engineers and often

constitutes a large part of the entire FPGA software verification

process. After confirming correct functioning, we use it as a

common oracle program with which to co-simulate.

3.1.2. Step 2dCo-simulation
IST-FPGA then co-simulates all designs (i.e., Verilog/VHDL,

Netlist, and Layout) with the test scenarios simultaneously

with support of the Co-simulator. As a Verilog/VHDL program

is used as a correct answer (a common test oracle), all other

designs should show the same behaviors as the Verilog/VHDL

program. IST-FPGA uses ModelSim to simulate each design,

and the test benches generated by Verilog/VHDL Scenario

Generator are used to execute the simulator with a large

number of scenarios systematically and seamlessly.

3.1.3. Step 3dEvaluation
IST-FPGA finally evaluates all co-simulation results and

judges whether all designs work correctly or not. If all designs

show the same behaviors, i.e., the same outputs against all

test scenarios, it concludes that all designs work correctly. If

any design shows different behavior from the common oracle

program, it shows the case in detail to analyze when the

design works differently.

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Fig. 4 e The simulation using Verilog Scenario Generator and ModelSim. (A) Verilog Scenario Generator. (B) Scenario (test

bench) generated. (C) The Verilog simulation with ModelSim.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1474

Author's Personal Copy
It is worth noting that we can use an FBD program at the

level of design specification as a common oracle program,

as proposed by the NuDE framework [3]. An FBD program is

more intuitive to understand and analyze as compared

with RTL languages, and we also have many systems

designed with FBD working correctly. The NuDE frame-

work, therefore, proposes to use FBD programs as design

specifications and to generate RTL programs mechanically

from the FBD programs. We can generate a number of

meaningful test scenarios (i.e., as Scenario Generator,

which this paper proposes) from the FBD program with

support of FBD Scenario Generator, and also generate two

test benches that can execute the scenarios on FBD pro-

grams and Verilog/Netlist/Layout programs, respectively.

We then simulate them with FBD Simulator [37] to confirm
that they work correctly and can co-simulate them

simultaneously.

3.2. Supporting tools for IST-FPGA

Verilog/VHDL Scenario Generator generates a number of

meaningful scenarios mechanically from Verilog/VHDL pro-

grams and prepares test benches to seamlessly simulate the

programswith generated scenarios throughModelSim. Fig. 4A

shows the Verilog Scenario Generator, generating 1,000 sce-

narios of 100 cycles from a Verilog program implementing

Fixed Set-point Falling Trip Logic in the reactor protection

system (RPS). The tool first reads a Verilog (or VHDL) program

and requests more information about the program from de-

signers, such as initial values and rates of change for all input

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1 475

Author's Personal Copy
variables, a trip set-point, and the percentage of trip situations

in all generated scenarios (this has now been customized into

the features of the RPS). The number of execution cycles for

each scenario and the total number of scenarios to generate

are also required. Fig. 4B shows an example of the scenario

(i.e., test bench) generated by Verilog Scenario Generator that

a simulator ModelSim can simulate seamlessly, as shown in

Fig. 4C.

We can confirm the correctness of the Verilog program

against the generated scenarios by inspecting the simulation

results carefully. For example, the fixed set-point falling trip

logic simulated in Fig. 4C has an important input (PV_OUT)

that starts from 15,000 and changes at the maximum rate of

50. If the trip condition PV_OUT � TSP is satisfied for 20 cycles

(TSP_CNT), then the shutdown signal will be initiated (i.e.,

TRIP¼ 1), as shown in the simulator. The simulation in Fig. 4C

shows the situation when the pre-trip was first activated,

followed by the trip. The current input value of PV_OUT is

12,838, while PTSP is 14,220¼ 13,920þ 300 (hysteresis) and TSP

is 13,200¼ 12,900þ 300.Wemodified the real value of trip/pre-

trip set-points to aid understanding. The pre-trip (PTRIP) is a

warning signal before the actual alarm, TRIP, and also shows

the same behavior as the trip signal, but works earlier in

advance of the trip signal. After confirming its correct

behavior through careful reviews of simulation results by

experts, the program (i.e., a Verilog program in this example)

will be used as a correct answer (i.e., a comparison oracle

program) for all other design artifacts.

It is worth noting that the scenarios generated by Verilog/

VHDL Scenario Generator try to reflect the physical conditions

for the RPS trip logic. Fig. 4A shows that we set information on

all input variables, as well as auxiliary information, such as

falling trip and trip set-point (12,900). It also set the tool to

generate scenarios, in which ~40% would generate the trip

signal. Fig. 5 shows the trajectories of 1,000 scenarios gener-

ated, i.e., 1,000 trajectories of the input variable PV OUT during

100 cycles.

The Co-simulator plays the role of an integrated controller

in IST-FPGA, and allows designers to perform the three steps

of IST-FPGA seamlessly andmechanically. Step 1 - Preparation

for a common oracle program with massive and meaningful

scenarios is the same as the Verilog/VHDL Scenario Generator,

except that it can also generate and execute scenarios for FBD

programs. Three designs, such as Verilog, VHDL, and FBD

programs, can be used as candidates for the comparison

oracle program at the first step, as shown in Fig. 6A.

Step 2 - Co-simulation of all designs simultaneously re-

quires all input designs, such as FBD, Verilog, VHDL, netlist

(EDIF), and post-layout, as well as required libraries, as pre-

sented in Fig. 6B. It then performs the co-simulation of all

input designs with the simulation scenarios generated in the

previous step by executing ModelSim or FBD Simulator in the

background.

Co-simulator also supports Step 3 - Evaluation of simula-

tion results altogether. If it detects any inequivalent case

against the oracle program in co-simulation, it explains all

simulation traces graphically (i.e., produces a counterexample

ofmodel-checking techniques [38] to aid the analysis, such as,

“Where and when does the inequivalent occur?”). For

example, the graph in Fig. 6C shows that the netlist shows
different/incorrect behavior in the 59th cycle. The graphical

counter example helps designers analyze the incorrect

behavior of a specific design and localize errors in the design

(this example used a seeded error in netlist design).

FBD Scenario Generator and FBD (Massive) Simulator are

specialized tools for FBD programs. The NuDE framework

[3,39] proposes the use of FBD programs as design specifica-

tions for RTL designs, and the FBD Scenario Generator gen-

erates a number of meaningful scenarios, while the FBD

(Massive) Simulator simulates them independently from the

software engineering tools of PLC vendors [38]. We notice that

the trace of the FBD program shown in Fig. 7 is easier to un-

derstand as compared to the wave of ModelSim in Fig. 4C,

while they all show the same behavior.
4. Experimental results

We performed an experiment with two examples of software

implementations (i.e., Verilog and VHDL programs) that are

under development as new FPGA-based digital I&Cs in Korea.

We demonstrated how IST-FPGA can reduce the time and cost

of the simulation-based verification of FPGA software. Fig. 8

provides an overview of the entire process and the experi-

mental targets. The Verilog program of Case I was developed

to confirm the functionalities (trip logics) of the new FPGA-

based RPS [5], and consisted of 18 independent shutdown

logics/modules with no hardware-dependent implementation

details. The VHDL program of Case II, however, was the pro-

gram used to synthesize, configure, and download into the

FPGAs of the diverse protection system. It includes four

shutdown logics as well as FPGA HW details such as I/Os.

For both the Verilog/VHDL programs, we performed the

FPGA software development using Libero SoC and Synplify Pro

(Synopsys, Mountain View, CA, ISA) [40]. As shown in Fig. 8,

IST-FPGA performed the simulation-based verification with

support of Co-simulator. We estimated the time taken for the

IST-FPGA based verification and also compared it with the

calculated/estimated times of traditional approaches per-

formed individually and independently, as shown on the left-

hand side of Fig. 8. The equation for calculating the estimated

time taken for each verification approach is as follows:

EIST�FPGA ¼
XN

i¼1

EIST�FPGAðiÞ; (1)

where:

EIST�FPGAðiÞ ¼ EStep 1ðiÞ þ TStep 2þStep 3ðiÞ

EStep 1ðiÞ ¼ TScenario GenerationðiÞ þ EMOðiÞ

EMOðiÞ ¼ eMOðiÞ � NS

TStep 2þStep 3ðiÞ ¼ TCo-SimulationðiÞ

where: N ¼ the number of logics/modules

(1 � i � N ¼ 18); EðiÞ ¼ estimated time; NS ¼ the number of

scenario (NS ¼ 1,000); and e ¼ meaning that we measured it

with average time to estimate.

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Fig. 5 e Trajectories of the 1,000 scenarios generated for a fixed set-point falling trip logic. PTSP, pretrip setpoint; TSP, trip

setpoint.

Fig. 6 e Co-simulation for IST-FPGA. (A) Step 1: Preparation. (B) Step 2: Co-simulation. (C) Step 3: Evaluation. FPGA, field-

programmable gate arrays; IST, integrated software testing.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1476

Author's Personal Copy

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Fig. 7 e FBD simulator. FBD, function block diagram.

Fig. 8 e Experimental overview. FPGA, field-programmable gate arrays; IST, integrated software testing; P&R, place and

route; PLD, programmable logic device; RPS, reactor protection system; RTL, register-transfer level; VHDL, VHISC hardware

description languages.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1 477

Author's Personal Copy

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1478

Author's Personal Copy
In IST-FPGA, Step 1 consists of scenario generation and

making the oracle (MO). Verilog/VHDL Scenario Generator or

Step 1 of the Co-simulator can perform the scenario genera-

tion, and we can measure the exact executing time. However,

MO is performed manually and depends upon the complexity

of the test scenario generation and the experience of the ex-

perts. Therefore, we estimated eMOðiÞ as the average time of

10 samples. Steps 2 and 3 are supported by the Co-simulator,

and the executing time can be measured accurately.

ETA ¼
XN

i¼1

ETAðiÞ; (2)

where:

ETAðiÞ ¼ ESDðiÞ þ TSimulationðiÞ þ EEvaluationðiÞ

ESDðiÞzTScenario GenerationðiÞ

TSimulationðiÞ ¼ TBSðiÞ þ TLSðiÞ þ TPSðiÞ

EEvaluationðiÞzEMOðiÞ � 3:
Table 1 e Summarized information for each module and meas
input; po, primary output; reg, register.
The time for the traditional approach (TA) can be estimated

as shown above. Scenario development (SD) time is regarded

in the same way as with the IST-FPGA, since Verilog/VHDL

Scenario Generator can do it mechanically. The simulation

time, including behavioral simulation (BS), logic simulation

(LS), and post-layout simulation (PS) for three steps are

measured by ModelSim. The evaluation time for three simu-

lation results can reasonably be regarded as the three times of

EMOðiÞ in IST-FPGA.
4.1. Case IdThe Verilog program

The Verilog program consists of 18 logics/modules, as sum-

marized in Table 1. For example, the Hi_CNY_PRS_FSR logic

(module) has 34 inputs and two outputs while using 36 reg

variables to store information for later steps. Asmostmodules

were developed to confirm the functionality of shutdown

logics, they have two outputs: trip and pre-trip. Implementa-

tion details, such as operational bypass and heartbeat, are not

implemented in the Verilog program, while they are in the

VHDL program.
ured time in Case I. SD, scenario development; pi, primary

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Table 2 e Summarized information for eachmodule andmeasured time in Case II. SD, scenario development; DPS, diverse
protection system; pi, primary input; po, primary output; reg, register.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1 479

Author's Personal Copy
We performed two simulation-based verifications, the IST-

FPGA and the TA, and measured the time taken for each ac-

cording to the formulae above. We generated 1,000 scenarios

of 100 cycles, and the values of eMOðiÞ were estimated by ex-

perts as an average of 10 real evaluation times of simulation

results. For example, eMOð1Þ for the Hi_CNY_PRS_FSR module

was estimated as 0.33 minutes, and EMOð1Þ will be 0.33 * 1,000.

Since EMOðiÞ takes a larger portion of total verification time

(up to 90%), the number of times the action has to be executed

plays an important role in reducing the total verification time.

While the IST-FPGA performs the activity only one time at

Step 1 (Preparation), TAs have to do it for each evaluation step

and will take threefold longer than IST-FPGA. In summary,

IST-FPGA could perform the simulation-based test 2.73-times

faster than TAs, even when executing and evaluating the

same set of test scenarios.

4.2. Case IIdThe VHDL program

The VHDL program includes four shutdown logics, as well as

implementation details, such as interfaces for FPGA hard-

ware, as summarized in Table 2. For example, the DPS_BP 1

module uses 50 inputs (bits), 104 outputs (bits), and 2,815 reg

variables (bits). Implementation details, such as operational

bypass and heartbeat, were set appropriately beforehand.

We performed two simulation-based verifications and

measured (estimated) the time using the samemethods as in

Case I. We used VHDL Scenario Generator instead of Verilog

Scenario Generator. The results of Case II were similar to

those of Case I, but it took much more time, as the VHDL

program consists of more complex and larger scales of

logics. In summary, IST-FPGA could perform the simulation-

based test 2.87-times faster than TAs under the same

conditions.

4.3. Experiment analysis

The experiment claimed that IST-FPGA is approximately

threefold faster than traditional simulation-bases testing

approach. However, the time and cost of the TA greatly

depend on the experience and ability of developers and test

engineers. As we assume that the two approaches use the

same simulation scenarios mechanically generated by Co-

simulator, the time taken to develop test scenarios for TAs

may be underestimated. It must take a considerable amount

of time for developers to develop such test scenarios. How-

ever, they use a massive number of simulation scenarios (e.g.,
1,000), and the time taken to evaluate simulation results may

be overestimated, even if not multiplied by three. Such

massive numbers of test scenarios cannot be developed nor

used in practice.

The heart of the question is how to guarantee the quality of

simulation scenarios generated by Co-simulator or Verilog/

VHDL Scenario Generator mechanically. If the scenarios are

meaningful ones reflecting the RPS trip logics, the experiment

will go close to common agreement. We now try to reflect the

fixed set-point trip logic to generate simulation scenarios as

shown in Figs. 4 and 5. Other trip logics, such as manual reset

and variable set-point, should be dealt with, and we are

working on these.

Structural testing techniques [41], as well as functional

testing, should be considered to improve the quality of simu-

lation scenarios. We need to check the code coverage [20] of

simulation scenarios generated against RTL programs to

determine whether they meet the code coverage requirements

for safety-critical I&C systems, which unfortunately are not yet

defined. DO-254 [28] in avionics requires 100% statement and

branch coverages for complex hardware systems that use

FPGAs, complex programmable logic devices, and application-

specific integrated circuits. It is also required that Verilog/VHDL

Scenario Generator generates test scenarios that can meet

specific predefined code coverages, and vice versa. We are now

planning an approach to this problem.
5. Related work

There are several methods performing design verification in

the FPGA software development process. Simulation-based

verification is a widely used way to confirm the correctness

of designs. The co-simulation [42] technique can also be used

to execute two designs in parallel. Yang et al [43] proposed RTL

scan flow that is similar to our framework. It uses simulation

scenarios to perform co-simulation with an RTL-level design

and a mapped design in an FPGA environment (iPOVE) [44]. It

is more closely related to hardware/software co-simulation.

Zheng et al [14] proposed an FPGA software verification

method using test bench and assertion analysis. It simulates

an RTL program and a gate-level design with generated sce-

narios, including assertions. The simulation with assertions

checks specific design features and can be used to show the

authenticity and efficiency of FPGA. Neither support auto-

mated scenario generation.

http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1480

Author's Personal Copy
There are also several methods used to generate simula-

tion scenarios from HDL designs [45e47]. Vemuri et al [45]

presented a method for generation of input sequences from

VHDL programs. It generates input sequences to execute

desired control-flow paths through enumeration, constraint

generation, and constraint-solving techniques. Gharebaghi

et al [46] presented two generation algorithms that work on

the VHDL process, representing combinational logic and

sequential logic. The goal of both algorithms is to test all

portions of the process body by traversing all the feasible

paths in order to achieve high coverages. Hari et al [47] pro-

posed a methodology for automatic extraction of word-level

model constraints from Verilog. The scenarios are also

expressed as constraints, which can be solved using an

integer solver to arrive at the necessary functional test.
6. Conclusions and future work

This paper proposed an integrated software testing frame-

work (IST-FPGA) for FPGA-based digital controllers in NPPs. It

simulates all designs in each level of FPGA software develop-

ment simultaneously and evaluates whether all designs work

correctly against common oracle programs. It also generates a

massive number of input scenarios with the guide of domain

experts in order to produce meaningful scenarios reflecting

reactor shutdown logics. It is also supported by assistant tools,

such as Verilog/VHDL Scenario Generator and Co-simulator.

We performed experiments with two FPGA software imple-

mentations of RPS and showed that the proposed framework

can save time and costs associated with verifying FPGA

software.

We are now trying to improve the quality of simulation

scenarios, which are automatically generated by our tools, in

twoways. From the aspect of functional testing, more delicate

scenario generation reflecting all reactor shutdown logics are

required. From the aspect of structural testing, code coverages

for RTL programs should be measured and also be used to

generate simulation scenarios, and vice versa. We are also

planning to analyze the correspondence between the code

coverages in RTL and Netlists at the gate-level in order to

clarify the impact of high-quality FPGA software designs on

FPGA hardware implementations.
Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgments

This research was supported, in part, by a grant from the

Korean Ministry of Science, ICT, and future planning under

the I&C Safety Conformance Assessment Platform. It was also

supported, in part, by a grant from the Korea Atomic Energy

Research Institute under the development of the core soft-

ware technologies of the integrated development environ-

ment for FPGA-based controllers.
r e f e r e n c e s

[1] J. Kim, E.S. Kim, J. Yoo, A translator verification technique for
FPGA software development in nuclear power plants,
Transactions of the Korean Nuclear Society Autumn
Meeting, Pyeongchang, Korea, 2014, pp. 1986e1988.

[2] International Electrotechnical Commission (IEC),
International standard for programmable controllers:
Programming languages 61131-Part 3, IEC, 1993.

[3] J. Yoo, J.H. Lee, J.S. Lee, A research on seamless platform
change of reactor protection system from PLC to FPGA, Nucl.
Eng. Technol. 45 (2013) 477e488.

[4] J.G. Choi, Survey of the CPLD/FPGA technology for
application to NPP digital I&C system, Technical Report,
Korea Atomic Energy Research Institute, 2009.

[5] J. Choi, D. Lee, Development of RPS trip logic based on PLD
technology, Nucl. Eng. Technol. 44 (2012) 697e708.

[6] J. Ranta, The current state of FPGA technology in the nuclear
domain, Technical Report, VTT Technical Research Centre of
Finland, Espoo (Finland), 2012.

[7] NS-G-1.2, Safety assessment and verification for nuclear
power plants: safety guide, IAEA, Vienna, 2004.

[8] International Electrotechnical Commission (IEC), Nuclear
power plantseInstrumentation and control systems
important to safetyeSoftware aspects for computer-
based systems performing category A functions, IEC
60880, 2006.

[9] International Electrotechnical Commission (IEC), Nuclear
power plantseInstrumentation and control important to
safetyeHardware design requirements for computer-based
systems, IEC 61513, 2011.

[10] Xilinx [Internet]. San Jose, CA, USA, 2013 [cited 2016 Feb 17].
Xilinx ISE Design Suite. Available from: http://www.xilinx.
com/products/design-tools/ise-design-suite.html.

[11] Altera [Internet]. San Jose, CA, USA, 2015 [cited 2016 Feb 17].
Quartus Prime. Available from: https://www.altera.com/
products/design-software/overview.html.

[12] Microsemi [Internet]. Aliso Viejo, CA, USA, 2015 [cited 2016
Feb 17]. Libero SoC. Available from: http://www.microsemi.
com/products/fpga-soc/design-resources/design-software/
libero-soc.

[13] D. Kim, M. Ciesielski, S. Yang, A new distributed event-
driven gate-level HDL simulation by accurate prediction,
Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, Grenoble, France, 2011, pp. 1e4.

[14] D. Zheng, W. Yichen, Z. Xueyi, The methods of FPGA
software verification, 2011 IEEE International Conference on
Computer Science and Automation Engineering (CSAE),
Shanghai, China, Volume 3, IEEE, 2011, pp. 86e89.

[15] R.E. Bryant, A methodology for hardware verification based
on logic simulation, JACM 38 (1991) 299e328.

[16] International Electrotechnical Commission (IEC), Nuclear
power plantseInstrumentation and control important to
safetyeHardware design requirements for computer-based
systems, IEC 60987, 2013.

[17] International Electrotechnical Commission (IEC), Nuclear
power plantseInstrumentation and control important to
safetyeDevelopment of HDL-programmed integrated
circuits for systems performing category A functions, IEC
62566, 2012.

[18] M. Bobrek, D. Bouldin, D.E. Holcomb, S.M. Killough,
S.F. Smith, C. Ward, R.T. Wood, Review guidelines for field-
programmable gate arrays in nuclear power plant safety
systems, NUREG/CR-7006, U.S. NRC, 2010.

[19] R. Lissel, J. Gerlach, Introducing new verification methods
into a company's design flow: an industrial user's point of
view, Proceedings of the Conference on Design, Automation,

http://refhub.elsevier.com/S1738-5733(16)00004-8/sref1
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref1
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref1
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref1
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref1
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref2
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref2
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref2
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref3
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref3
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref3
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref3
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref4
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref4
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref4
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref4
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref5
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref5
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref5
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref6
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref6
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref6
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref7
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref7
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref8
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref9
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref9
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref9
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref9
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref9
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref9
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.altera.com/products/design-software/overview.html
https://www.altera.com/products/design-software/overview.html
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref13
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref13
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref13
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref13
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref13
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref13
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref14
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref14
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref14
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref14
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref14
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref15
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref15
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref15
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref16
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref16
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref16
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref16
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref16
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref16
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref17
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref18
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref18
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref18
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref18
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref19
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref19
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref19
http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 (2 0 1 6) 4 7 0e4 8 1 481

Author's Personal Copy
and Testing in Europe, EDA Consortium, Nice, France, 2007,
pp. 689e694.

[20] J.Y. Jou, C. Liu, Coverage analysis techniques for HDL design
validation, Proceedings of the 6th Asia Pacific Chip Design
Languages, Fukuoka, Japan, 1999, pp. 48e55.

[21] S. Sjoholm, L. Lindh, The need for co-simulation in ASIC-
verification, EUROMICRO 97. New Frontiers of Information
Technology, Proceedings of the 23rd EUROMICRO
Conference, IEEE, Budapest, Hungary, 1997, pp. 331e335.

[22] MathWorks [Internet]. Natick, MA, USA, 2015 [cited 2016 Feb
17]. HDL Verifier. Available from: http://kr.mathworks.com/
products/hdl-verifier/features.html.

[23] C. Valderrama, F. Naçabal, P. Paulin, A. Jerraya, Automatic
VHDL-C interface generation for distributed co-simulation:
application to large design examples, Des. Autom. Embed.
Syst. 3 (1998) 199e217.

[24] B. Oraw, V. Choudhary, R. Ayyanar, A co-simulation
approach to model-based design for complex power
electronics and digital control systems, Proceedings of
the 2007 Summer Computer Simulation Conference,
Society for Computer Simulation International, San Diego,
CA, USA, 2007, pp. 157e164.

[25] Mentor Graphics [Internet] Wilsonville, OR, USA, 2016 [cited
2016 Feb 17]. Questa ADMS. Available from: https://www.
mentor.com/products/fv/advance_ms/.

[26] SCC [Internet]. 2015, [cited 2016 Feb 17]. Software
Certification Consortium. Available from: http://cps-vo.org/
group/scc.

[27] J.K. Lee, Y.M. Kim, Design and verification of FPGA-based
applications in nuclear power plants, J. Energy Power Eng. 7
(2013) 537e544.

[28] Radio Technical Commission for Aeronautics (RTCA), Design
assurance guidance for airborne electronic hardware, DO-
254, 2000.

[29] Institute of Electrical and Electronics Engineers (IEEE), IEEE
standard for software verification and validation, IEEE 1012,
2005.

[30] International Electrotechnical Commission (IEC), Functional
safety of electrical, electronic and programmable electronic
(E/E/PE) safety-related systems, IEC 61508, 2000.

[31] Institute of Electrical and Electronics Engineers (IEEE), IEEE
standard criteria for digital computers in safety systems of
nuclear power generating stations, IEEE 7-4.3.2, 2003.

[32] Institute of Electrical and Electronics Engineers (IEEE), IEEE
standard criteria for safety systems of nuclear power
generating stations, IEEE 603, 2003.

[33] TR-1019181, Guidelines on the use of field-programmable
gate arrays in nuclear power plant I&C systems, Electric
Power Research Institute, 2009.

[34] TR-109390, Design description of a prototype
implementation of three reactor protection system channel
using field-programmable gate arrays, Electric Power
Research Institute, 1998.

[35] TR-1022983, Recommended approaches and design criteria
for application of field-programmable gate arrays in nuclear
power plant instrumentation and control systems, Electric
Power Research Institute, 2009.

[36] Mentor Graphics [Internet]. Wilsonville, OR, USA, 2015 [cited
2016 Feb 17]. ModelSim. Available from: http://www.mentor.
com/products/fpga/simulation/modelsim.

[37] E.S. Kim, D.A. Lee, J. Yoo, The scenario generator for verifying
the correctness of FBDtoVerilog translator Volume 1, Korea
Information Processing Society (KCC 2014), Busan, Korea,
2014, pp. 599e602 [in Korean].

[38] E.M. Clarke, O. Grumberg, D. Peled, Model checking, MIT
press, Cambridge, 1999.

[39] J. Yoo, E.S. Kim, D.A. Lee, J.G. Choi, An integrated software
development framework for PLC- & FPGA-based digital I&Cs,
International Symposium on Future I&C for Nuclear Power
Plants/International Symposium on Symbiotic Nuclear
Power System (ISOFIC/ISSNP), Jeju, Korea, 2014.

[40] Synopsys [Internet]. Mountain View, CA, USA, 2015 [cited
2016 Feb 17]. Synplify Pro. Available from: http://www.
synopsys.com/Tools/Implementation/FPGAImplementation/
FPGASynthesis/Pages/SynplifyPro.aspx.

[41] M. Pezze, M. Young, Software testing and analysis: process,
principles, and techniques, John Wiley & Sons, New York,
2008.

[42] S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist,
H. Olsson, R. Wiichner, K.U. Bletzinger, Interface Jacobian-
based co-simulation, Int. J. Numer. Meth. Eng. 98 (2014)
418e444.

[43] S. Yang, H. Shim, W. Yang, C.M. Kyung, A new RTL debugging
methodology in FPGA-based verification platform,
Proceedings of 2004 IEEE Asia-Pacific Conference on
Advanced System Integrated Circuits 2004, Fukuoka, Japan,
IEEE, 2004, pp. 180e183.

[44] Dynalith Systems, iPROVE: a block design and Verification
platform, White Paper, 2003.

[45] R. Vemuri, R. Kalyanaraman, Generation of design
verification tests from behavioral VHDL programs using path
enumeration and constraint programming, IEEE T. VLSI Syst.
3 (1995) 201e214.

[46] A.M. Gharebaghi, Z. Navabi, High-level test generation from
VHDL behavioral descriptions, Proceedings of the VHDL
International Users Forum Fall Workshop (VIUF'00), Orlando,
FL, USA, 2000, pp. 123e126.

[47] S.K.S. Hari, V.V.R. Konda, V. Kamakoti, V.M. Vedula,
K.S. Maneperambil, Automatic constraint-based test
generation for behavioral HDL models, IEEE T. VLSI Syst. 16
(2008) 408e421.

http://refhub.elsevier.com/S1738-5733(16)00004-8/sref19
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref19
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref19
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref20
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref20
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref20
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref20
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref21
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref21
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref21
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref21
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref21
http://kr.mathworks.com/products/hdl-verifier/features.html
http://kr.mathworks.com/products/hdl-verifier/features.html
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref23
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref23
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref23
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref23
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref23
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref24
https://www.mentor.com/products/fv/advance_ms/
https://www.mentor.com/products/fv/advance_ms/
http://cps-vo.org/group/scc
http://cps-vo.org/group/scc
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref27
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref27
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref27
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref27
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref28
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref28
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref28
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref29
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref29
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref29
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref30
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref30
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref30
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref31
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref31
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref31
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref32
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref32
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref32
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref33
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref33
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref33
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref33
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref34
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref34
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref34
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref34
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref35
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref35
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref35
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref35
http://www.mentor.com/products/fpga/simulation/modelsim
http://www.mentor.com/products/fpga/simulation/modelsim
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref37
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref37
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref37
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref37
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref37
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref38
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref38
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref39
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/Pages/SynplifyPro.aspx
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref41
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref41
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref41
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref41
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref42
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref42
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref42
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref42
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref42
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref43
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref43
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref43
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref43
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref43
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref43
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref44
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref44
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref45
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref45
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref45
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref45
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref45
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref46
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref46
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref46
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref46
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref46
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref47
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref47
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref47
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref47
http://refhub.elsevier.com/S1738-5733(16)00004-8/sref47
http://dx.doi.org/10.1016/j.net.2015.12.008
http://dx.doi.org/10.1016/j.net.2015.12.008

	An Integrated Software Testing Framework for FPGA-Based Controllers in Nuclear Power Plants
	1. Introduction
	2. Background
	2.1. FPGA development and software verification
	2.2. Simulation-based verification
	2.3. Standards and guidelines for FPGA design verification

	3. IST-FPGA
	3.1. Overview
	3.1.1. Step 1—Preparation
	3.1.2. Step 2—Co-simulation
	3.1.3. Step 3—Evaluation

	3.2. Supporting tools for IST-FPGA

	4. Experimental results
	4.1. Case I—The Verilog program
	4.2. Case II—The VHDL program
	4.3. Experiment analysis

	5. Related work
	6. Conclusions and future work
	Conflicts of interest
	Acknowledgments
	References

